A microbial survey of the International Space Station (ISS)
نویسندگان
چکیده
Background Modern advances in sequencing technology have enabled the census of microbial members of many natural ecosystems. Recently, attention is increasingly being paid to the microbial residents of human-made, built ecosystems, both private (homes) and public (subways, office buildings, and hospitals). Here, we report results of the characterization of the microbial ecology of a singular built environment, the International Space Station (ISS). This ISS sampling involved the collection and microbial analysis (via 16S rDNA PCR) of 15 surfaces sampled by swabs onboard the ISS. This sampling was a component of Project MERCCURI (Microbial Ecology Research Combining Citizen and University Researchers on ISS). Learning more about the microbial inhabitants of the "buildings" in which we travel through space will take on increasing importance, as plans for human exploration continue, with the possibility of colonization of other planets and moons. Results Sterile swabs were used to sample 15 surfaces onboard the ISS. The sites sampled were designed to be analogous to samples collected for (1) the Wildlife of Our Homes project and (2) a study of cell phones and shoes that were concurrently being collected for another component of Project MERCCURI. Sequencing of the 16S rDNA genes amplified from DNA extracted from each swab was used to produce a census of the microbes present on each surface sampled. We compared the microbes found on the ISS swabs to those from both homes on Earth and data from the Human Microbiome Project. Conclusions While significantly different from homes on Earth and the Human Microbiome Project samples analyzed here, the microbial community composition on the ISS was more similar to home surfaces than to the human microbiome samples. The ISS surfaces are species-rich with 1,036-4,294 operational taxonomic units (OTUs per sample). There was no discernible biogeography of microbes on the 15 ISS surfaces, although this may be a reflection of the small sample size we were able to obtain.
منابع مشابه
Microbial Existence in Controlled Habitats and Their Resistance to Space Conditions
The National Research Council (NRC) has recently recognized the International Space Station (ISS) as uniquely suitable for furthering the study of microbial species in closed habitats. Answering the NRC's call for the study, in particular, of uncommon microbial species in the ISS, and/or of those that have significantly increased or decreased in number, space microbiologists have begun capitali...
متن کاملGrowth of 48 built environment bacterial isolates on board the International Space Station (ISS).
Background. While significant attention has been paid to the potential risk of pathogenic microbes aboard crewed spacecraft, the non-pathogenic microbes in these habitats have received less consideration. Preliminary work has demonstrated that the interior of the International Space Station (ISS) has a microbial community resembling those of built environments on Earth. Here we report the resul...
متن کاملCharacterization of Aspergillus fumigatus Isolates from Air and Surfaces of the International Space Station
One mission of the Microbial Observatory Experiments on the International Space Station (ISS) is to examine the traits and diversity of fungal isolates to gain a better understanding of how fungi may adapt to microgravity environments and how this may affect interactions with humans in a closed habitat. Here, we report an initial characterization of two isolates, ISSFT-021 and IF1SW-F4, of Aspe...
متن کاملErratum to: Whole metagenome profiles of particulates collected from the International Space Station
BACKGROUND The built environment of the International Space Station (ISS) is a highly specialized space in terms of both physical characteristics and habitation requirements. It is unique with respect to conditions of microgravity, exposure to space radiation, and increased carbon dioxide concentrations. Additionally, astronauts inhabit a large proportion of this environment. The microbial comp...
متن کاملWhole metagenome profiles of particulates collected from the International Space Station
Background: The built environment of the International Space Station (ISS) is a highly specialized space in terms of both physical characteristics and habitation requirements. It is unique with respect to conditions of microgravity, exposure to space radiation, and increased carbon dioxide concentrations. Additionally, astronauts inhabit a large proportion of this environment. The microbial com...
متن کامل